Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Nanobiotechnology ; 22(1): 184, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622644

RESUMO

Despite the advent of numerous targeted therapies in clinical practice, anthracyclines, including doxorubicin (DOX), continue to play a pivotal role in breast cancer (BC) treatment. DOX directly disrupts DNA replication, demonstrating remarkable efficacy against BC cells. However, its non-specificity toward cancer cells leads to significant side effects, limiting its clinical utility. Interestingly, DOX can also enhance the antitumor immune response by promoting immunogenic cell death in BC cells, thereby facilitating the presentation of tumor antigens to the adaptive immune system. However, the generation of an adaptive immune response involves highly proliferative processes, which may be adversely affected by DOX-induced cytotoxicity. Therefore, understanding the impact of DOX on dividing T cells becomes crucial, to deepen our understanding and potentially devise strategies to shield anti-tumor immunity from DOX-induced toxicity. Our investigation focused on studying DOX uptake and its effects on human lymphocytes. We collected lymphocytes from healthy donors and BC patients undergoing neoadjuvant chemotherapy (NAC). Notably, patient-derived peripheral blood mononuclear cells (PBMC) promptly internalized DOX when incubated in vitro or isolated immediately after NAC. These DOX-treated PBMCs exhibited significant proliferative impairment compared to untreated cells or those isolated before treatment initiation. Intriguingly, among diverse lymphocyte sub-populations, CD8 + T cells exhibited the highest uptake of DOX. To address this concern, we explored a novel DOX formulation encapsulated in ferritin nanocages (FerOX). FerOX specifically targets tumors and effectively eradicates BC both in vitro and in vivo. Remarkably, only T cells treated with FerOX exhibited reduced DOX internalization, potentially minimizing cytotoxic effects on adaptive immunity.Our findings underscore the importance of optimizing DOX delivery to enhance its antitumor efficacy while minimizing adverse effects, highlighting the pivotal role played by FerOX in mitigating DOX-induced toxicity towards T-cells, thereby positioning it as a promising DOX formulation. This study contributes valuable insights to modern cancer therapy and immunomodulation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Leucócitos Mononucleares , Terapia Neoadjuvante , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
3.
Pharmacol Res ; 196: 106934, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734460

RESUMO

Brain metastasis (BM) represents a clinical challenge for patients with advanced HER2 + breast cancer (BC). The monoclonal anti-HER2 antibody trastuzumab (TZ) improves survival of BC patients, but it has low central nervous system penetrance, being ineffective in treating BM. Previous studies showed that ferritin nanoparticles (HFn) may cross the blood brain barrier (BBB) through binding to the transferrin receptor 1 (TfR1). However, whether this has efficacy in promoting the trans-BBB delivery of TZ and combating BC BM was not studied yet. Here, we investigated the potential of HFn to drive TZ brain delivery and promote a targeted antitumor response in a murine model of BC BM established by stereotaxic injection of engineered BC cells overexpressing human HER2. HFn were covalently conjugated with TZ to obtain a nanoconjugate endowed with HER2 and TfR1 targeting specificity (H-TZ). H-TZ efficiently achieved TZ brain delivery upon intraperitoneal injection and triggered stable targeting of cancer cells. Treatment with H-TZ plus docetaxel significantly reduced tumor growth and shaped a protective brain microenvironment by engaging macrophage activation toward cancer cells. H-TZ-based treatment also avoided TZ-associated cardiotoxicity by preventing drug accumulation in the heart and did not induce any other major side effects when combined with docetaxel. These results provided in vivo demonstration of the pharmacological potential of H-TZ, able to tackle BC BM in combination with docetaxel. Indeed, upon systemic administration, the nanoconjugate guides TZ brain accumulation, reduces BM growth and limits side effects in off-target organs, thus showing promise for the management of HER2 + BC metastatic to the brain.

4.
J Cereb Blood Flow Metab ; 43(9): 1601-1611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37113060

RESUMO

Identification of reliable and accessible biomarkers to characterize ischemic stroke patients' prognosis remains a clinical challenge. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are markers of brain injury, detectable in blood by high-sensitive technologies. Our aim was to measure serum NfL and GFAP after stroke, and to evaluate their correlation with functional outcome and the scores in rehabilitation scales at 3-month follow-up. Stroke patients were prospectively enrolled in a longitudinal observational study within 24 hours from symptom onset (D1) and monitored after 7 (D7), 30 ± 3 (M1) and 90 ± 5 (M3) days. At each time-point serum NfL and GFAP levels were measured by Single Molecule Array and correlated with National Institute of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), Trunk Control Test (TCT), Functional Ambulation Classification (FAC) and Functional Independence Measure (FIM) scores. Serum NfL and GFAP showed different temporal profiles: NfL increased after stroke with a peak value at D7; GFAP showed an earlier peak at D1. NfL and GFAP concentrations correlated with clinical/rehabilitation outcomes both longitudinally and prospectively. Multivariate analysis revealed that NfL-D7 and GFAP-D1 were independent predictors of 3-month NIHSS, TCT, FAC and FIM scores, with NfL being the biomarker with the best predictive performance.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Proteína Glial Fibrilar Ácida , Filamentos Intermediários , Biomarcadores
5.
ACS Omega ; 8(8): 7244-7251, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873018

RESUMO

Due to its unique architecture and innate capability to specifically target cancer cells, ferritin has emerged as an attractive class of biomaterials for drug delivery. In many studies, various chemotherapeutics have been loaded into ferritin nanocages constituted by H-chains of ferritin (HFn), and their related anti-tumor efficacy has been explored by employing different strategies. Despite the multiple advantages and the versatility of HFn-based nanocages, there are still many challenges to face for their reliable implementation as drug nanocarriers in the process of clinical translation. This review aims at providing an overview of the significant efforts expended during recent years to maximize the features of HFn in terms of increased stability and in vivo circulation. The most considerable modification strategies explored to improve bioavailability and pharmacokinetics profiles of HFn-based nanosystems will be discussed herein.

6.
Analyst ; 148(9): 2012-2020, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36974521

RESUMO

Lipoproteins (LPs) are multimolecular complexes of lipids and proteins responsible for transporting fatty acids, cholesterol, and micronutrients (carotenoids) through the body. The quantification of triglycerides and cholesterol carried by lipoproteins is a leading clinical parameter to assess the increased risk of cardiovascular events. However, in recent times, the study of the overall "quality" of lipoproteins, defined by their biochemical composition and oxidation state, has emerged as necessary to improve the definition of the cardiovascular risk. In this work, we present Raman spectroscopy (RS) as an effective method to immediately detect the functional groups relative to the principal biochemical components and the level of unsaturated lipids present in LPs. Furthermore, we show how RS can reveal the differences in the biochemical composition and oxidation state of LPs extracted from a cohort of obese patients (Ob) and a control group of healthy subjects (HC). In particular, RS revealed how low-density lipoproteins (LDLs) from obese patients are enriched in triglycerides and more oxidized than those from the control group, while high-density lipoproteins (HDLs) from Ob patients were depleted in cholesterol and phospholipids. RS analysis also allowed the study of the relationship between the levels of carotenoids present in the different classes of LPs highlighting how this parameter depends on the disease severity. Overall, these results demonstrated that RS is a viable approach for quickly and effectively gaining information on LPs' biochemical composition and oxidation state, providing an immediate measure of their quality. Besides, RS further proved the role of LPs in obesity and metabolic dysfunctions.


Assuntos
Lipopolissacarídeos , Análise Espectral Raman , Humanos , Voluntários Saudáveis , Lipoproteínas , Colesterol/metabolismo , Triglicerídeos , Obesidade
7.
Sci Rep ; 13(1): 4041, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899015

RESUMO

Neurofilament light chains (NfL) are neuron-specific cytoskeletal proteins whose plasmatic concentrations have been explored as a clinically useful marker in several types of dementia. Plasma concentrations of NfL are extremely low, and just two assays are commercially available for their study: one based on the SiMoA technology and one based on Ella. We thus studied plasma levels of NfL with both platforms to check the correlation between them and to assess their potential in the diagnosis of neurodegeneration. Plasma NfL levels were measured on 50 subjects: 18 healthy controls, 20 Alzheimer's disease, and 12 frontotemporal dementia patients. Ella returned plasmatic NfL levels significantly higher than SiMoA, however the results were strongly correlated (r = 0.94), and a proportional coefficient of 0.58 between the two assays was calculated. Both assays detected higher plasma NfL levels in patients with dementia than in the control group (p < 0.0001) and allowed their discrimination with excellent diagnostic performance (AUC > 0.95). No difference was found between Alzheimer's and Frontotemporal dementia either using SiMoA or Ella. In conclusion, both the analytical platforms resulted effective in analysing plasma levels of NfL. However, the correct interpretation of results requires the precise knowledge of the assay used.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Filamentos Intermediários , Biomarcadores , Doença de Alzheimer/diagnóstico , Proteínas de Neurofilamentos , Proteínas do Citoesqueleto
8.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358706

RESUMO

Immune inflammatory biomarkers are easily obtained and inexpensive blood-based parameters that recently showed prognostic and predictive value in many solid tumors. In this study, we aimed to investigate the role of these biomarkers in predicting distant relapse in breast cancer patients treated with neoadjuvant chemotherapy (NACT). All breast cancer patients who referred to our Breast Unit and underwent NACT were retrospectively reviewed. The pre-treatment neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and pan-immune-inflammation value (PIV) were calculated from complete blood counts. The primary outcome was 5-year distant-metastasis-free survival (DMFS). In receiver operating characteristic analyses, the optimal cutoff values for the NLR, PLR, MLR, and PIV were determined at 2.25, 152.46, 0.25, and 438.68, respectively. High levels of the MLR, but not the NLR, PLR, or PIV, were associated with improved 5-year DMSF in the study population using both univariate (HR 0.52, p = 0.03) and multivariate analyses (HR, 0.44; p = 0.02). Our study showed that the MLR was a significant independent parameter affecting DMFS in breast cancer patients undergoing NACT. Prospective studies are required to confirm this finding and to define reliable cutoff values, thus leading the way for the clinical application of this biomarker.

9.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012501

RESUMO

BACKGROUND: Bisdemethoxycurcumin (BDC) might be an inflammation inhibitor in Alzheimer's Disease (AD). However, BDC is almost insoluble in water, poorly absorbed by the organism, and degrades rapidly. We thus developed a new nanoformulation of BDC based on H-Ferritin nanocages (BDC-HFn). METHODS: We tested the BDC-HFn solubility, stability, and ability to cross a blood-brain barrier (BBB) model. We tested the effect of BDC-HFn on AD and control (CTR) PBMCs to evaluate the transcriptomic profile by RNA-seq. RESULTS: We developed a nanoformulation with a diameter of 12 nm to improve the solubility and stability. The comparison of the transcriptomics analyses between AD patients before and after BDC-HFn treatment showed a major number of DEG (2517). The pathway analysis showed that chemokines and macrophages activation differed between AD patients and controls after BDC-HFn treatment. BDC-HFn binds endothelial cells from the cerebral cortex and crosses through a BBB in vitro model. CONCLUSIONS: Our data showed how BDC-Hfn could improve the stability of BDC. Significant differences in genes associated with inflammation between the same patients before and after BDC-Hfn treatment have been found. Inflammatory genes that are upregulated between AD and CTR after BDC-HFn treatment are converted and downregulated, suggesting a possible therapeutic approach.


Assuntos
Doença de Alzheimer , Apoferritinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Diarileptanoides , Células Endoteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo
10.
Breast Cancer Res Treat ; 192(1): 65-74, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935096

RESUMO

PURPOSE: Preliminary reports suggest that extracellular vesicles (EVs) might be a promising biomarker for breast cancer (BC). However, the quantification of plasmatic levels of EVs is a complex task. To overcome these limitations, we developed a new, fast, and easy to use assay for the quantification of EVs directly in plasma based on the use of Single-Molecule Array (SiMoA). METHODS: By using SiMoA to identify CD9+/CD63+ EVs, we analyzed plasma samples of 181 subjects (95 BC and 86 healthy controls, HC). A calibration curve, made of a serial dilution of lyophilized standards from human plasma, was used in each run to ensure the obtainment of quantitative results from the assay. In a subgroup of patients, EVs concentrations were estimated in plasma before and after 30 days from cancer surgery. Additional information on the size of EVs were also acquired using a Nanosight system to obtain a clearer understanding of the mechanism underlying the releases of EVs associated with the presence of cancer. RESULTS: The measured levels of EVs resulted significantly higher in BC patients (median values 1179.1 ng/µl vs 613.0 ng/µl, p < 0.0001). ROC curve was used to define the optimal cut-off level of the test at 1034.5 ng/µl with an AUC of 0.75 [95% CI 0.68-0.82]. EVs plasmatic concentrations significantly decreased after cancer surgery compared to baseline values (p = 0.014). No correlation was found between EVs concentration and clinical features of BC. CONCLUSION: SiMoA assay allows plasmatic EVs levels detection directly without any prior processing. EVs levels are significantly higher in BC patients and significantly decreases after cancer surgery.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Biomarcadores , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Curva ROC
11.
Front Oncol ; 11: 773078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804977

RESUMO

The host's immune system plays a crucial role in determining the clinical outcome of many cancers, including breast cancer. Peripheral blood neutrophils and lymphocytes counts may be surrogate markers of systemic inflammation and potentially reflect survival outcomes. The aim of the present study is to assess the role of preoperative systemic inflammatory biomarkers to predict local or distant relapse in breast cancer. In particular we investigated ER+ HER2- early breast cancer, considering its challenging risk stratification. A total of 1,763 breast cancer patients treated at tertiary referral Breast Unit were reviewed. Neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR) and lymphocyte-to-monocyte (LMR) ratios were assessed from the preoperative blood counts. Multivariate analyses for 5-years locoregional recurrence-free (LRRFS), distant metastases-free (DMFS) and disease-free survivals (DFS) were performed, taking into account both blood inflammatory biomarkers and clinical-pathological variables. Low NLR and high LMR were independent predictors of longer LRRFS, DMFS and DFS, and low PLR was predictive of better LRRFS and DMFS in the study population. In 999 ER+ HER2- early breast cancers, high PLR was predictive of worse LRRFS (HR 0.42, p=0.009), while high LMR was predictive of improved LRRFS (HR 2.20, p=0.02) and DFS (HR 2.10, p=0.01). NLR was not an independent factor of 5-years survival in this patients' subset. Inflammatory blood biomarkers and current clinical assessment of the disease were not in agreement in terms of estimate of relapse risk (K-Cohen from -0.03 to 0.02). In conclusion, preoperative lymphocyte ratios, in particular PLR and LMR, showed prognostic relevance in ER+ HER2- early breast cancer. Therefore, they may be used in risk stratification and therapy escalation/de-escalation in patients with this type of tumor.

12.
Front Med (Lausanne) ; 8: 725726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621763

RESUMO

A major concern in the management of Inflammatory Bowel Disease (IBD) is the absence of accurate and specific biomarkers to drive diagnosis and monitor disease status timely and non-invasively. Fibroblast activation protein (FAP) represents a hallmark of IBD bowel strictures, being overexpressed in stenotic intestinal myofibroblasts. The present study aimed at evaluating the potential of circulating FAP (cFAP) as an accessible blood biomarker of IBD. Quantitative determination of cFAP was performed by enzyme-linked immunosorbent assay on plasma samples prospectively collected from patients with IBD and control subjects. A discrimination model was established on a training set of 50% patients and validated on independent samples. Results showed that cFAP concentration was reduced in patients with IBD when compared to controls (p < 0.0001). Age, sex, smoking, disease location and behavior, disease duration and therapy were not associated with cFAP. The sensitivity and specificity of cFAP in discriminating IBD from controls were 70 and 84%, respectively, based on the optimal cutoff (57.6 ng mL-1, AUC = 0.78). Predictions on the test set had 57% sensitivity, 65% specificity, and 61% accuracy. There was no strong correlation between cFAP and routine inflammatory markers in the patients' population. A subgroup analysis was performed on patients with Crohn's disease undergoing surgery and revealed that cFAP correlates with endoscopic mucosal healing. In conclusion, cFAP deserves attention as a promising blood biomarker to triage patients with suspected IBD. Moreover, it might function as a biomarker of post-operative remission in patients with Crohn's disease.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120185, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298281

RESUMO

Microcalcifications (MCs) are important disease markers for breast cancer. Many studies were conducted on their characterization in female breast cancer (FBC), but no information is available on their composition in male breast cancer (MBC). Raman spectroscopy (RS) is a molecular spectroscopy that can rapidly explore the biochemical composition of MCs without requiring any staining protocol. In this study, we optimized an algorithm to identify the mineral components present in MCs from Raman images. The algorithm was then used to study and compare MCs identified on breast cancer pieces from male and female patients. In total, we analyzed 41 MCs from 5 invasive MBC patients and 149 MCs from 13 invasive FBC patients. Results show that hydroxyapatite is the most abundant type of calcium both in MBC and FBC. However, some differences in the amount and distribution of calcium minerals are present between the two groups. Besides, we observed that MCs in MBC have a higher amount of organic material (collagen) than FBC. To the best of our knowledge, this study provides the first overview of the composition of MCs present in MBC patients; and suggests that these patients have specific features that differentiate them from the previously studied FBC. Our result support thus the need for studies designed explicitly to the understanding of MBC.


Assuntos
Neoplasias da Mama Masculina , Neoplasias da Mama , Calcinose , Feminino , Humanos , Masculino
14.
J Am Chem Soc ; 143(31): 12253-12260, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320323

RESUMO

Molecular imaging techniques are essential tools for better investigating biological processes and detecting disease biomarkers with improvement of both diagnosis and therapy monitoring. Often, a single imaging technique is not sufficient to obtain comprehensive information at different levels. Multimodal diagnostic probes are key tools to enable imaging across multiple scales. The direct registration of in vivo imaging markers with ex vivo imaging at the cellular level with a single probe is still challenging. Fluorinated (19F) probes have been increasingly showing promising potentialities for in vivo cell tracking by 19F-MRI. Here we present the unique features of a bioorthogonal 19F-probe that enables direct signal correlation of MRI with Raman imaging. In particular, we reveal the ability of PERFECTA, a superfluorinated molecule, to exhibit a remarkable intense Raman signal distinct from cell and tissue fingerprints. Therefore, PERFECTA combines in a single molecule excellent characteristics for both macroscopic in vivo 19F-MRI, across the whole body, and microscopic imaging at tissue and cellular levels by Raman imaging.


Assuntos
Hidrocarbonetos Fluorados/química , Imageamento por Ressonância Magnética , Imagem Molecular , Sondas Moleculares/química , Imagem Corporal Total , Animais , Flúor , Camundongos , Estrutura Molecular , Análise Espectral Raman
16.
Nanotechnology ; 32(29)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33831854

RESUMO

SERS tags are a class of nanoparticles with great potential in advanced imaging experiments. The preparation of SERS tags however is complex, as they suffer from the high variability of the SERS signals observed even at the slightest sign of aggregation. Here, we developed a method for the preparation of SERS tags based on the use of gold nanostars conjugated with neutravidin. The SERS tags here obtained are extremely stable in all biological buffers commonly employed and can be prepared at a relatively large scale in very mild conditions. The obtained SERS tags have been used to monitor the expression of fibroblast activation protein alpha (FAP) on the membrane of primary fibroblasts obtained from patients affected by Crohn's disease. The SERS tags allowed the unambiguous identification of FAP on the surface of cells thus suggesting the feasibility of semi-quantitative analysis of the target protein. Moreover, the use of the neutravidin-biotin system allows to apply the SERS tags for any other marker detection, for example, different cancer cell types, simply by changing the biotinylated antibody chosen in the analysis.


Assuntos
Endopeptidases/genética , Proteínas de Membrana/genética , Nanopartículas Metálicas/química , Miofibroblastos/metabolismo , Octoxinol/química , Análise Espectral Raman/métodos , Avidina/química , Biotina/química , Doença de Crohn/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Endopeptidases/análise , Endopeptidases/metabolismo , Expressão Gênica , Ouro/química , Humanos , Íleo/metabolismo , Íleo/patologia , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/ultraestrutura , Miofibroblastos/patologia , Polietilenoglicóis/química , Cultura Primária de Células , Coloração e Rotulagem
17.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916703

RESUMO

Lipofilling (LF) is a largely employed technique in reconstructive and esthetic breast surgery. Over the years, it has demonstrated to be extremely useful for treatment of soft tissue defects after demolitive or conservative breast cancer surgery and different procedures have been developed to improve the survival of transplanted fat graft. The regenerative potential of LF is attributed to the multipotent stem cells found in large quantity in adipose tissue. However, a growing body of pre-clinical evidence shows that adipocytes and adipose-derived stromal cells may have pro-tumorigenic potential. Despite no clear indication from clinical studies has demonstrated an increased risk of cancer recurrence upon LF, these observations challenge the oncologic safety of the procedure. This review aims to provide an updated overview of both the clinical and the pre-clinical indications to the suitability and safety of LF in breast oncological surgery. Cellular and molecular players in the crosstalk between adipose tissue and cancer are described, and heterogeneous contradictory results are discussed, highlighting that important issues still remain to be solved to get a clear understanding of LF safety in breast cancer patients.


Assuntos
Tecido Adiposo/transplante , Neoplasias da Mama/cirurgia , Mamoplastia , Mastectomia , Recidiva Local de Neoplasia/cirurgia , Neoplasias da Mama/patologia , Feminino , Humanos
18.
Pharmaceutics ; 13(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562060

RESUMO

Protein nanocages represent an emerging candidate among nanoscaled delivery systems. Indeed, they display unique features that proved to be very interesting from the nanotechnological point of view such as uniform structure, stability in biological fluids, suitability for surface modification to insert targeting moieties and loading with different drugs and dyes. However, one of the main concerns regards the production as recombinant proteins in E. coli, which leads to a product with high endotoxin contamination, resulting in nanocage immunogenicity and pyrogenicity. Indeed, a main challenge in the development of protein-based nanoparticles is finding effective procedures to remove endotoxins without affecting protein stability, since every intravenous injectable formulation that should be assessed in preclinical and clinical phase studies should display endotoxins concentration below the admitted limit of 5 EU/kg. Different strategies could be employed to achieve such a result, either by using affinity chromatography or detergents. However, these strategies are not applicable to protein nanocages as such and require implementations. Here we propose a combined protocol to remove bacterial endotoxins from nanocages of human H-ferritin, which is one of the most studied and most promising protein-based drug delivery systems. This protocol couples the affinity purification with the Endotrap HD resin to a treatment with Triton X-114. Exploiting this protocol, we were able to obtain excellent levels of purity maintaining good protein recovery rates, without affecting nanocage interactions with target cells. Indeed, binding assay and confocal microscopy experiments confirm that purified H-ferritin retains its capability to specifically recognize cancer cells. This procedure allowed to obtain injectable formulations, which is preliminary to move to a clinical trial.

19.
Cells ; 10(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562504

RESUMO

Cancer-associated fibroblasts (CAFs) are key actors in regulating cancer progression. They promote tumor growth, metastasis formation, and induce drug resistance. For these reasons, they are emerging as potential therapeutic targets. Here, with the aim of developing CAF-targeted drug delivery agents, we functionalized H-ferritin (HFn) nanocages with fibroblast activation protein (FAP) antibody fragments. Functionalized nanocages (HFn-FAP) have significantly higher binding with FAP+ CAFs than with FAP- cancer cells. We loaded HFn-FAP with navitoclax (Nav), an experimental Bcl-2 inhibitor pro-apoptotic drug, whose clinical development is limited by its strong hydrophobicity and toxicity. We showed that Nav is efficiently loaded into HFn (HNav), maintaining its mechanism of action. Incubating Nav-loaded functionalized nanocages (HNav-FAP) with FAP+ cells, we found significantly higher cytotoxicity as compared to non-functionalized HNav. This was correlated with a significantly higher drug release only in FAP+ cells, confirming the specific targeting ability of functionalized HFn. Finally, we showed that HFn-FAP is able to reach the tumor and to target CAFs in a mouse syngeneic model of triple negative breast cancer after intravenous administration. Our data show that HNav-FAP could be a promising tool to enhance specific drug delivery into CAFs, thus opening new therapeutic possibilities focused on tumor microenvironment.


Assuntos
Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Apoferritinas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Confocal/métodos , Nanopartículas/metabolismo , Sulfonamidas/uso terapêutico , Engenharia Tecidual/métodos , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Feminino , Humanos , Camundongos , Sulfonamidas/farmacologia
20.
Molecules ; 25(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217959

RESUMO

Curcumin's pharmacological properties and its possible benefits for neurological diseases and dementia have been much debated. In vitro experiments show that curcumin modulates several key physiological pathways of importance for neurology. However, in vivo studies have not always matched expectations. Thus, improved formulations of curcumin are emerging as powerful tools in overcoming the bioavailability and stability limitations of curcumin. New studies in animal models and recent double-blinded, placebo-controlled clinical trials using some of these new formulations are finally beginning to show that curcumin could be used for the treatment of cognitive decline. Ultimately, this work could ease the burden caused by a group of diseases that are becoming a global emergency because of the unprecedented growth in the number of people aged 65 and over worldwide. In this review, we discuss curcumin's main mechanisms of action and also data from in vivo experiments on the effects of curcumin on cognitive decline.


Assuntos
Curcumina/uso terapêutico , Composição de Medicamentos , Doenças do Sistema Nervoso/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Cognição/efeitos dos fármacos , Curcumina/farmacologia , Modelos Animais de Doenças , Humanos , Doenças do Sistema Nervoso/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...